object Probability
A collection of utility functions related to probability theory.
- Deprecated
Remains for backwards compatibility. Use Distribution instead which has higher precision.
- Alphabetic
- By Inheritance
- Probability
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
argMax(values: Vector[Double]): Option[Int]
Returns an index to the vector, pointing to the highest value in the vector.
Returns an index to the vector, pointing to the highest value in the vector. If multiple maxima exist, it returns an index to one of those at random. If the vector values is empty, it returns None.
- values
Values represented in a vector of doubles (e.g., a probability distribution).
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
entropy(distribution: Vector[Double]): Double
Returns the Shannon information entropy of a distribution.
Returns the Shannon information entropy of a distribution.
For distributions that deviate from probability assumptions (i.e., the sum of the values equals 1.0), Shannon information entropy is ill-defined.
- distribution
The probability distribution, the values in this list should add to 1.0.
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
softArgMax(values: Vector[Double], beta: Double): Option[Int]
Returns an index to the distribution according to soft argMax with parameter beta.
Returns an index to the distribution according to soft argMax with parameter beta. If beta -> Inf, this function is equivalent to argMax. If the vector values is empty, it returns None.
- values
Values represented in a vector of doubles (e.g., a probability distribution).
- beta
The beta parameter, >=0. Soft argmax is ill-defined for negative beta values.
- returns
An index pointing to the value in the distribution
- See also
See this Wikipedia page for a mathmatical definition of soft argmax https://en.wikipedia.org/wiki/Softmax_function.
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
Language Agents Simulation framework
For detailed documentation on using the framework please see the README.md file at the Github repository at https://github.com/markblokpoel/lanag-core.